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1. Introduction

The theoryof equivariantcohomologyhasseveralimportantandwell-known
applicationsin symplecticgeometry.For example,it explains,almostfrom the
definition, thevariation of symplecticstructuresof the quotientsfrom a hamil-
tonian torus action [3]. Equivariant extensionsof the symplectic form were
foundto bein 1-1 correspondencewith the Poissonliftings of the hamiltonian
action [1]. And the “localization theorem”providesa penetratingunderstand-
ing [2,11of theDuistermaat-Heckmanformula [3]. Recentlythetheorycomes
into contactwith otherareasof mathematicalphysics, sheddingnew light on
problemssuchas the gaugingof WZW model [9] (and possiblymany other
physicalmodels),BRST quantization[6], and“non-abelianlocalizaion” [10],
which mayleadto a non-abelianexactstationaryphaseformula.

The purposeof this paperis to addressa relatedyet ratherbasicquestion,
namely, underwhat condition a closed invariant form admits an equivariant
extension.We first look at two examplesfrom differentbackgroundsmentioned
above.Throughoutthis paper, we denoteg the Lie algebraof a finite dimen-
sionalconnectedreal Lie group G. We choosea basis ~Xa, a = 1,. . . , dimg} of
g andfix the structureconstantsaccordingto [Xa, Xb I = C~bXc.(We sumover
repeatedindicesunlessotherwisestated.)If Gactssmoothlyon afinite dimen-

0393-0440/93/s06.00 © 1993 — Elsevier SciencePublishersB.V. All rights reserved



382 S. Wu / Cohomologicalobstructionsto equivariantextensions

sionalmanifoldM, we write ~a andLa respectivelyfor the contractionandthe
Lie derivativealongthe vectorfield inducedby Xa.

Example1. Suppose(M, w) is a symplectic manifold with a hamiltonianG-
action. G invarianceLaW = 0 andclosednessdw = 0 imply that diaw = 0,
i.e., i0w is a closedone-form.If they areexact, i.e., laW = dfa, the functions
fa (known as the momentmaps)do not necessarilytransformaccordingto the
adjoint representationof g. In otherwords the linear map Xa fa from g to
C°°(M) with thePoissonbracket{fa, fb} = Lafb neednot beahomomorphism
of Lie algebras.Nevertheless,the differences

Yab = {fa,fb}_CaCbfc (1.1)

area set of constantfunctions (assumingthatM is connected)andsatisfy

C~Ydc+ C~Yda+ C~Ydb= 0. (1.2)

If
Yab = C~bflc (1.3)

for a set of constantsfla, which is clearly a solution of (1.2) due to the Ja-
cobi identity, thenwe canredefinethe momentmapsby fa’ = fa — uia so that
laW = dfa’ andLaf~= {fa” fb’} = Cabfc, i.e., the mapXa F—~ fa’ is aLie alge-
bra homomorphism.It is well-known that (1.2) and (1.3) arethe cocycleand
coboundaryconditionsfor the cohomologygroupH

2 (~,ll~)of the Lie algebra.

Example 2. This appearsin the understandingof the Lagrangianactionof the
gaugedWess-Zumino—Witten(WZW) conformalfield theory (seeref. [9] and
referencestherein).Let w beaclosedinvariantthree-formon amanifoldM with
a G-action.If B is a three-manifold,then for eachmapçQ: B —+ M, ~w is atop
form on B. (In the WZW model,M = G with theleft andright multiplications
by Gand

w=~Tr(g’dgAg’dgAg’dg), (1.4)

whereg’ dg is the Maurer—Cartanform of G. lB ~ is known as the Wess-
Zuminoterm.) To gaugethe theory means,at leastmathematically,to find a
naturalway of defining~w if ç~is now a global sectionof a (possiblytrivial)
fiber bundleover B with structuregroupG andfiber M. This is possibleif and
only if [9] theclosedforms ~aWareexact,i.e., laW = d~.a,andthe).a’S transform
accordingto the adjoint representationof g, i.e.,

La)~b= C~b(c, (1.5)

andtheysatisfy
la)~b+ lbta = 0. (1.6)
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Onecanshowthat Yab = La~b— C~bAcis a closedone-formsatisfyinga similar
“cocycle” condition

C~bYdc C~Yad+ C~cYbd= LaYbc — LbYac. (1.7)

If y is a “coboundary”in the sense

r p cp

Yab — apb CabPc
for a setof closedone-formsPa, thenwecan redefine2~= )~a— Pa so that they
satisfy laW = dA~and (1.5): LaA’b = cab).c.

As pointedout in refs. [1,9], examples1 and2 areaboutequivariantexten-
sionsofclosedtwo- andthree-formsrespectively.In thefirst casethe obstruction
to suchanextensionlies in H2 (g,EI~);thisis well-known. In example2 theappro-
priatespaceson which (1.7) and (1.8) arecocycleandcoboundaryconditions
areyet to be identified; we will showthatthe obstructionlies in a suitableLie
algebracohomologygroup.

In section2, we recallthe basicdefinitions in equivariantcohomologytheory
and its de Rhamversions.Section 3 is devotedto studyingthe conditionsfor
the existenceof equivariantextensions.We show that thereis a sequenceof
obstructionsin the cohomologygroupsof the Lie algebrag with coefficientsin
suitableg-modules.Our generalformulaspecializingto example2 yields (1.7)
and (1.8).In section4, wediscusswhenthecohomologicalobstructionsvanish.
We thenshowthatourresultagreeswith the spectralsequencepointof view.

2. DeRhammodelsfor equivariantcohomology

In this section,we introducethe basicsettingandnotationsthatweneedto
formulatethe problemof equivariantextensions.

Let G be a Lie group and G ‘—~ EG —~ BG the universal G-bundle.The
total spaceEG is contractibleandhasa right G-action;the quotientBG is the
classifyingspaceof G-bundles.If G acts smoothlyon a manifoldM, the Borel
constructionon M is the spaceMG = EG xG M, wherethe identification is
(e, m) (eg,gm)fore E EG, m ~ M, g ~ G. TheprojectionMG —~ BG is a
fibrationoverBGwith fiberM; MG —* M/G is not asmoothfibration in general
unlessG actsfreely on M, in which caseeachfiber is EG. The qth equivariant
cohomologygroup of M (with the G-action) is H~(M) = H” (EG XG M). It
canbe non-zerofor arbitrarily largeq.

Let g be the Lie algebraof G with a basis {Xa}. The Well algebra of g is
the set W(g) = ~(g*) ® S(g”) with a gradingspecifiedby deg~l(g*)= 1,
degS’(g*) = 2. Let {X*~Z} be the dualbasisof~*andO’~,~a the imagesof ~
in A’ (g*), 51 (gd’) respectively.We definetheformal contractionIa with Xa and
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the exteriorderivative d by

jaOb~
5ab laI~0 (21)

do” = ~a — ~ d~5’~= cg~çY)Oc. (2.2)

Onecan checkthat d andi~satisfythe standardrelationsandthe Lie derivative
La = dja + lad on W(9) is identicalto the coadjointaction. If P -~+ B is a
principal G-bundlewith aconnection,thenthe Well homomorphismw: W(g)
Q (P) of the two gradedalgebrasmaps0a andçb” to the correspondingcompo-
nentsof connectionandcurvaturerespectively.w commuteswith d, Ia, La of
the two algebras.We definethe basicsubspaceof Q (P) by

Q(P)bas = {WEQ(P)IixW = 0,L~O)= 0,VxE9}. (2.3)

It is clearthat d maps ~2(
1~)basinto itself and that Q (B) ~ Q (P)jjas is an

isomorphism.One can define W(~i)bas similarly and show that it is equal to
S(g*)G.

If M is a smoothmanifold with aG-action,the spaceof equivariantformson
Mis

Q~,(M) = (Q (M) ® W(9))bas (2.4)

The Chern—Well homomorphism

Qg(M) = (Q(M) 0 W(0))bas Q(P X M)bas ~ Q(P xG M). (2.5)

is the restriction to the basic subspaceof the map from Q(M) ® W(~)to
Q (P x M), a trivial extensionof the Weil homomorphism.The inducedho-
momorphismon the cohomologygroup ITT: H* (QQ(M), d) —~ H* (P XG M)
doesnot dependon the choiceof connectionon P. Since EG —~ BG can beap-
proximatedby finite dimensionalfibrations,thereis a naturalhomomorphism
H* (Qg(M), d) —~ H* (EG xG M) = H~(M).It turns out that if G is a com-
pact connectedLie group, this homomorphismis an isomorphism[1]. Thus
(Q~(M),d) is a “de Rhammodel” for equivariantcohomology.

Another model, due to Cartan,is probably more useful for computations.
Considerthe isomorphism[71(seealso ref. [1] for the caseG = U (1))

Q~(M)~ (Q(M) ®S(
9*))G, (2.6)

wherethe mapsare (for a = 1,...,dimg andwE Q(M))

E(Oa) = 0, ~ = ~a �(w) = w (2.7)

and
= ~a 1(w) = — Oajaw + ~OaObjajbw —.... (2.8)

Theinduceddifferential d = e dj on (Q (M) ® S(9* ))G ~

= 0, dw = dw — ~alaW (2.9)
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Hence,wehave

H*(Q9(M), d) ~ H*((Q(M) ®S(g*))G, d); (2.10)

bothof them areisomorphicto H,(M) if G is compact.
It is now straightforwardto explain the extensionproblem. If w E Q” (M)

is a closed G-invariantq-form on M with a G-action,a (closed) equivariant
extensionof w is anelementw~E Q~’(M) suchthat

dw~= 0 and w*J00~0= w; (2.11)

or equivalently,an elementth E (Q(M) ® S(9*)y of degreeq suchthat

= 0 and = w. (2.12)

Geometrically,if such an extension w# or iii exists, then for any principal G-
bundleP -~ B, there is a closed q-form ~ on the total space of P xG M —k B
whoserestrictionto eachfiber is w. Therefore,if ço: B —~ P is a global section,
the pull backq*TTJ would be the closestanalogueof 9*w whenç~: B —f M wasa
map. This is neededin gaugingthe Wess-Zuminoterm.Notice thatneitherthe
definition northe geometricconsequenceof the equivariantextensionrequires
the compactnessof G.

3. Cohomologicalobstructions to equivariant extension

Assumethat a closed G-invariantq-form w E Q”(M) hasan equivariant
extension,that is, thereexists aclosedform

[q/2J

~ w~i~~”’. . ~“‘ (3.1)

in (Q~(M)®5(~*))G suchthat~(~) = w. = 0 implies a seriesofidentities

l{aIW~a}~ = dw~I~ (r = 1,2,., [q/2j + 1), (3.2)

or
0 =

= dw
2~,

l{a
1W~

2~ (3.3)

(q—2[q/2J+2) — ,~ (q—2[q/2])
l{ai Wa

2.. a,q/2) } — uWa1 . . a[q/2]
ha w(2[~~/2U = 0, if q is odd.

I a2..’a[q/2]÷I}

(Thebracestandsfor symmetrizationof tensorindices.)First of all, (3.3) im-
plies
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Condition (Ar). Each (q — 2r + 1)-form l{a,W~~
2~ is exact.

Furthermore,since1,5 is G-invariant,the (q — 2r)-forms ~ musttrans-
form accordingto the rth totally symmetrizedtensorproductS’~of the adjoint
representationof ~. Therefore,(3.3) alsoimplies

Condition (Br). Each a-map S~ Bq_2F+i (M) defined by the tensor
I{ai ~ lifts to a g-mapS~ Qq~2r(M) defininga newtensor

(Ar) and (Br), beingtrivially true when r = 0, can be regardedas a set of
recursionconditionsas r runsthrough 1,..., [q/2] + 1. It is clearthat they are
alsosufficient for the existenceof ~(~2t~) andhence1i.

We now analysethetwo conditions.Assuming(Ar_i) and (Br_i) are already
satisfied,it is automaticthat each (q — 2r + 1)-form 11a W~,” ~2) is closed.In
fact, from

L
(q—2r+2) — a’ (q—2r+2)

a,Wa

2a, — caiawa2...aia,aii...a,
1=i

wehave,
L{aiW~~~

2~= 0, (3.5)

since the structureconstantsare anti-symmetricin the two lower indices. It
follows that

A (q—2r+2) ~ (q—2r+2) (q—2r+4) 6
ui{alWa

2...a,} = ~{aI~~~Wa2...a,} =

1{aIla
2Wa3...a,} =

becauseanytwo contractionsanti-commute.Thus condition (Ar) requiresthat
the deRhamclassin H”

2’~ ‘(M) representedby the closedform l{ai ~(~_2r±2)
is trivial.

Condition (Br) needsmoreexplanation.Since d commuteswith the G-action
on differential forms,

0 . ~~_2r(~) . Qq~2r(~f)~ B~-2~’(M) . 0 (3.7)

is ashortexactsequenceof g-modules(i.e.,modulesoverthe universalenvelop-
ing algebraU(g)). Condition (Br) requiresthat the elementI{a,W~”~2~in

Homu(~)(S’g, ~ 1(M)) shouldcomefromonein Hom(J(
9)(S’iq, w”

2’(M)).

Usingthe long exactsequence

0 —p Homu(g) (S’~, Z~_2r(M))—* Homu~(S’~, Qq_2r (M)) —~

Hom~r(g)(srg,B”-2~’ (M)) -~+ Ext~](~)(sr
9,z~

2r(M)) —~ . ,(3.8)

we concludethat (B,-) is satisfiedif andonly if the imageof l{a w~jF2) in
Ext~(

9)(S’~,~~_
2r(~J)) is zero.
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It is a standardresult (seefor example[5, §3]) that thereis a naturalisomor-
phism

Ext~)(W,V) ~ H”(g,Hom~(W~V)),n = 0,1,2,..., (3.9)

for two g-modulesW andV. Since

Hom,,,(~”g,Hom,~(W,V))~ Hom,~(~”g®~W,V), (3.10)

H~(g,Horn,, (W, V)) is thenthe cohornologyof the complex

0 —~ Hom,,(A°g®,,W,V) ~ Hom,,(~’g®,,W,V)

~* Hom,t(A2g®,,W,V) —~ .~, (3.11)

whereô
0: Hom,,(A”~®~W, V) —~ Hom,,(A”~’~®~W, V) is the coboundary

map.For Yn E Hom,,(~°g®,,W,V), we Wandx~g (I = 0,... ,n),

ô~Y0(XoAAX0®W)

~

+ ~ ~ (3.12)
O<:<j<n

To describethe natural isomorphismin (3.9), recall that “Ext” is the nth
derivedfunctorof “Horn”. Considerthe projectiveresolutionof W (compare
[5, §2])

0~W~ UO®RW~U, ®,,W~U2®,,W~ ~. (3.13)
HereU,-, = U(g) ®,tA”g; asag-module,g actson U(g) asusualandactstrivially
on /\“g. Themape picks up the constantterm of degreezeroin U(g) andd,, is
definedby

a~(u®x0A...Ax0) =

+ ~
O<i<j<n

(u e U(g), x, E g, 1 = 0,.. ,n) (3.14)

on U~4,andextendstrivially to U~11®W. Ext~J(~)(W,V) is definedas the nth
cohomologygroupof the cochaincomplex

0 Homu(g)(U0 ®,, W, V) ~ Homu(g)(U, ®~W, V)

~ Homu~(U2®~W,V) .. ... (3.15)

obtainedby applyingthe functor HomU(~)(.,V) to (3.13). Underthe natural
isornorphism
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HomLT(9)(Ufl ®,,W,V) = Hom~>r(9)(U(~) ®~A~o~W,V)

~ Homu(Q)(U(0),Hom,~(A”~®RW, V)) ~ Hornt,(A°~®,,W,V),
(3.16)

the map1),~correspondsto ö,~.Hencethe isomorphismin (3.9).
We summarizeour discussionsin the following

Theorem 1. If a Lie group G acts smoothly on a manifold Al and w is a
closedG-invariant q-form on M, then w admits an equivariant extensionif
and only if the following sequenceof conditionsare satisfiedrecursivelyfor
r = 1,..-, [(q + 1)/2] (setw(~)=
(A,-) The de Rham class in H~

2~’(Al) representedby the closed form
(q—2r+2) -

l{aIWa
2...a,} is trivia

(Br) The cohomological class in H’ (~, Hom,~(S’~,Z”~
2~(M))) defined by

the image of l{aW ~2) under the map HomU(~)(S’~,B”2~~’(M))-~÷

Ext~i(Q) (sr
9, ~—2r (Al)) -~ H

1 (~, Hom,~(S~,Z~2r(Al))) is trivial, thereby

defininga newtensor

In example2, w13~= (ii, W~’~ ~a andthe last identity of (3.3) coincide
with (1.6).We shall checkfrom the cochaincomplex

Hom~(Q,Z’(M))~Hom~(g®g,Z’(M))

~ Hom~(A2~®~,Z’(M))--- (3.17)

the cocycleandcoboundaryconditionsfor the cohomologygroup
H’ (~,Horn,,(S’~,Z’(Al))) = kethi/im5

0.Using (3.12), {Yab} e ker5, means

0 = (ÔIY)abc = LaYbc — LhYac — c~,-ybd+ C~,-Yad — ~ (3.18)

whereas{Yah} e imó0 means

‘lab = (‘
50fl)ab = La/3b — C~bflc, (3.19)

for Pa eZ’(M). Theseidentitiesmatchprecisely (1.7) and (1.8).
For example 1, we only have to replacetheset Z’ (Al) in (3.17)by Z°(M) =

11. As aconsequence,the terms in (3.18) and (3.19) involving Lie derivatives
drop out; the remainingtermsaretotally anti-symmetricin the tensorindices,
since‘lab = Yba as definedin (1.1). Hence (3.18)and (3.19)are reducedto
(1.2) and (1.3) respectively.Furthermore,ô,, 5~areequal (up to a sign) to ó~,
~2 of a differentcochaincomplex

~ —~ --- (3.20)

whosecohomologygroup is H2(~,EJfl= ker5
3/imó2.Thus we get a pleasant

surprise:
H

2 (g,H) ExtL(
9) (~, H). (3.21)
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This coincidencemaybeexplainedby thefollowing observation.Ext~f(,)(W, V)

is the setof inequivalentg-moduleextensionsof W by V; whereasH2 (g,a) is
the setof Lie algebraextensionsof g by anotherLie algebraa. If W = g and
V = a,a trivial g-module(orabelianLie algebra),thetwo notionsof extensions
arethe same.Hencethe isomorphismin (3.21).

The problemof uniquenessis relatively easy.If the equivariantextensionof
w exists and ~ . . . ~(q_2r+2) are alreadychosen,then the set of different
choicesof ~ is parametrizedby Horn~(,)(SPg,Z~_2r(Al)).For instance,the
fa’5 in example1 and)~~‘sin example2 areuniqueup to a set of constantsand
closedone-formsrespectively in the adjoint representation.The cohornology
classof 1,5 in H,~(M)doesdependon the choicesof the ~(~~2r)’

5~

4. Further discussions

In this section,we first discusswhenthecohomologicalobstructionsfound in
theorem1 vanish.

The conditions(A,-) areabouttopologiesof the manifold M; they neednot
be true evenif G is compactandsemi-simple.The counterpartin symplectic
geometryis that the harniltonianactionsneednot lift to momentmaps; such
examplesare well-known. Though ~ (M) = 0 is certainly a sufficient
conditionfor (A,-), thisis impossibleif q — 2r + 1 = 0, whichhappensin gauging
the WZW model.Thethree-form (1.4) on Al = G is invariant underthegroup
G x G actingas the left andright multiplications.Trivially, it is invariantunder
anygroupH providedthereis a grouphomomorphismfrom H to G x G. It was
shownthat the G x G-equivariantextensiondoesnot exist [9], because(A2)
fails to hold.Neverthelessif H = G or its subgroupwith thediagonalimbedding
into G x G, thenthe H-equivariantextensionof w doesexist [9].

Ontheotherhand,theconditions(B,-) areaboutpropertiesof thegroupG. If G

is semi-simpleandE, F arefinite dimensionalrepresentationsof its Lie algebra
g, thenExt~~(,)(E, F) = 0 [5, §11]. It follows thatif G is compact,semi-simple,
the spaceExt~J(Q)(SP~,Z~_2r(M))is alwayszero, since the representationon
~ (Al) is adirect sumof finite dimensionalones.If G is semi-simplebut
non-compact,thereare a few “vanishing theorems”for the group “Ext’

1” [5,
§11], but applicationsto our caseare not straightforward,becauseZ~1_2T(M)

maybefairly complicatedas a representationspace.A notableexception(from
symplecticgeometry) is that semi-simplicity implies Ext~J(,,)(g,Z°(Al)) = 0,

but it probablydoesnot guarantee(Br) if q — 2r > 0. If G is ageneralLie group,
the following is perhapsthe simplestexamplebeyondsymplecticgeometryin
which the equivariantextensiondoesnot exist while all the conditions (A,-)
are true.Take G = H3, actingas translationson the spaceAl = H3 andw =

~abc dtii’1 A dm~~A dm’~,the volume form, where~abc is the standardtotally
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anti-symmetricLevi-Civita tensor.We shallusea, b, c = 1, 2, 3 as theindicesof
both the Lie algebra~ = H3 andthe coordinates{(m’, m2, m3)} on Al. Since

laW = ~abc dm”~A dmc = ~abc d (mbdmc), (4.1)

we canchoose

= abc m’~’dm’~. (4.2)

It is clearthat the cocycle

‘lab = La)~b= 4~~abcdmc (43)

in Hom,,(g ®,,g, Z’ (M)) cannotbea coboundary, for if this were the case, there
would exist closed (hence exact) one-forms Pa = df~ such that

Y~b= LaI3b = dLafh. (4.4)

Comparing(4.3) and (4.4),we get

Lafb = ~abcmc + ~ab (4.5)

for a setof constants~ab andhence

LcLafb ~ (4.6)

a contradiction since two partial derivativescommute (not anti-commute).
Indeed, the relevant cohomology ~ (g,Horn,, (~, Z’ (Al))) is not zero. To
compute this group, notice first that as a s-module, Hom,,(g,Z’ (Al)) =

Z’ (Al) o Z’ (M) +Z’ (Al). So whatweshall computeis the cohomologygroup
H’ (

9,Z’ (M)). The spaceof the cocyclesin Hom,,(9,Z’ (Al)) is

kerö, = {(13a) IPa = dfa eZ’(M) = B’(Al),La/3b = LbJ3a}, (4.7)

whereasthatof the coboundariesis

im50 = {(/3a) Pa = LaP = dLaf, /3 = df E Z ‘(Al) = B ‘(M)}. (4.8)

(4.7) implies d(Lafb— Lbfa) = 0 andhence

Lafb — Lbfa = gab, (4.9)

where~ab areconstants,amongthem threeare independent. If they all vanish,

thenthereis a functionf suchthat fa = L~fandhence

Pa = dLaf = Ladf (4.10)

is a coboundary.ThusH’ (g,Z’ (M)) ~ H
3 and

Ext~)(g,Z’(M)) H’(~,Horn,,(~,Z’(M)))~ H9. (4.11)

Finally, we wish to point out the consistency of our main result with the point
of view of spectralsequences.Equivariantextensionfits into a more general

problem: given a fibration F ~-L E L B, whether a cohomology class on F lies



S. Wu / Cohomologicalobstructionsto equivariantextensions 391

in the imageof the pull back i~from H*(E). In our case,B = BG, F =

E = EGXGM.
Recall thateveryfibrationdeterminesa filtered cochaincomplexof thetotal

space.For instance,if B is of aCW complex,we can usethe naturalfiltration
of the total spaceE accordingto the skeletaof B. A morerelevantapproachis
the deRhamversion [4]. SupposeE, F, B aresmoothmanifoldsand{b}, {f},
local coordinateson B, F respectively.Thereis a naturalfiltration

0 = F~’Q”(E) cFt1Q°(E)c ~cF’Q”(E)cF°Q”(E) = Q°(E)
(4.12)

of the deRhamcomplexQ* (E) where

F~Q°(E)= {~= ~ q
1j(b,f)db’A dfJ}. (4.13)

~I+ Ill =n,IjI�p

Under a mild assumptionthat m1 (B) acts trivially on H*(F) (which is ob-
viously true in our casesince it1 (BG) is trivial), we can constructa spectral
sequencesuch that E~ = QP(B,Q~(F)), the spaceof p-forms on B taking
values in the spaceof q-forms on F, and E~’ = QP(B,H~(F)).As usual,
Epq = H~(B,H”(F)) and the sequenceconvergesto H*(E). The composite
mapin

H~(E)~_~+E~=E~,cE~”c.~.cE~=H”(F) (4.14)

is preciselythe pull backi*:Hq(F) —~ H”(E) [8, ch. 3]. Whenthe fibration is
a non-trivial, the inclusionsin (4.14)areproper,hencethe Betti numbersof E
aresmallerthanthe correspondingonesof B x F.

The cohomologicalobstructionsin section3 can be interpretedasthe a series
of conditionsfor the class [w] e H~(F)= E2

0” to lie in E~,whoseelements
extendto thetotalspace.In fact,afiltration ofthespaceQ = (Q (M)®S(g* ))G

of equivariantform is givenby
[n/2]

F~Q~= { ~ ~,~(n—2r),~a,~
[(p+ I )/2]

eHomu(g)(S?~,Q~~_2r(Al))}. (4.15)

Accordingto the standardalgebraicconstruction[8, ch. 2],

~ ~— (F2[(~1)/21Q”~’ )
= ~-q —q+I ~---q-V (4.16)

F2Q n d (F2[(k+1)/2]Q ) + dQ

Therefore(4.14) becomes

H~(Q,d)—~+E~= E~/
2]~2= E~121~,C

c E~= E°~c E2
0~= H” (M) (4.17)
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for q evenand

H~(Q,d) E~”= E~/2]~3C E2
0~

121~2= E~/2]~,

c c E4
0” = E

3
0” C E0~= H~(Al) (4.18)

for q odd. The statement[wI e E~+
2meansthat w can be extendedto an

elementin which is “partially” closed, i.e., whose image under d is in
F2r+2Q~’. Thus for [w] alreadyin E~,(A,-) and (B,-) in theorem1 arepre-
cisely the conditionsthatguarantee[w] e ~ For q odd, the extra term in
(4.18) that doesnot appearin (4.17) is clearlya reflectionof the last equality
in (3.3).

I would like to thankY.-Q. Chen,L. JeffreyandD.A. Voganfor discussions.
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